Robust stability for stochastic bidirectional associative memory neural networks with time delays
نویسندگان
چکیده
منابع مشابه
Robust stability for stochastic bidirectional associative memory neural networks with time delays
In this paper, the asymptotic stability is considered for a class of uncertain stochastic bidirectional associative memory neural networks with time delays and parameter uncertainties. The delays are time-invariant and the uncertainties are norm-bounded that enter into all network parameters. The aim of this paper is to establish easily verifiable conditions under which the delayed neural netwo...
متن کاملNew robust stability results for bidirectional associative memory neural networks with multiple time delays
In this paper, the robust stability problem is investigated for a class of bidirectional associative memory (BAM) neural networks with multiple time delays. By employing suitable Lyapunov functionals and using the upper bound norm for the interconnection matrices of the neural network system, some novel sufficient conditions ensuring the existence, uniqueness and global robust stability of the ...
متن کاملRobust stability of bidirectional associative memory neural networks with time delays
Based on the Lyapunov–Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms. 2005 Publi...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملOn exponential stability of bidirectional associative memory neural networks with time-varying delays
For bidirectional associate memory neural networks with time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated by employing the Lyapunov functional method and linear matrix inequality (LMI) technique. A novel criterion for the stability, which give information on the delay-dependent property, is derived. A nume...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2008
ISSN: 1742-6596
DOI: 10.1088/1742-6596/96/1/012003